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A segmentation method is presented for gray matter, white matter, and cerebrospinal fluid (CSF) in thin-
sliced single-channel brain magnetic resonance (MR ) scans. The method is based on probabilistic modeling
of intensity distributions and on a region growing technique. Interrater and intrarater reliabilities for the
method were high, and comparison with phantom studies and hand-traced results from an experienced
rater indicated good validity. The method was designed to account for spatially dependent image intensity
inhomogeneities. Segmentation of MR brain scans of 105 (56 male and 49 female) healthy children and
adolescents showed that although the total brain volume was stable over age 4—18, white matter increased
and gray matter decreased significantly. There were no sex differences in total gray and white matter
growth after correction for total brain volume. White matter volume increased the most in superior and
posterior regions and laterality effects were seen in hemisphere tissue volumes. These findings are consistent

with other reports, and further validate the segmentation technique.
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INTRODUCTION

Magnetic resonance ( MR) imaging, because of its lack
of ionizing radiation, excellent spatial resolution, and
ability to acquire images in any plane of orientation
is an invaluable tool for in vivo anatomical studies.
Classification of MR image voxels as gray matter,
white matter, or cerebrospinal fluid (CSF) is important
for brain anatomical research because these contrasts
define the boundaries of most brain structures.'

The majority of automated tissue segmentation
strategies have relied on multiple-channel image data
in which information from nearly simultaneously ac-
quired images highlighting different tissue characteris-
tics, such as 7, and T, relaxation times and proton
density, are integrated to maximize discriminating
power.'""? Because of the limitation of the clinically
acceptable imaging times, pulse sequences giving geo-
metrically registered multiple-channel data usually

yield images with large voxel sizes; a major drawback
for multiple-channel techniques. A phantom study has
shown that the error in volume computation and the
effects of partial volume averaging rise as voxel size
increases.'* Large voxel sizes introduce significant par-
tial voluming effects and do not provide adequate spa-
tial resolution to accurately quantify small, but biologi-
cally important, subcortical structures. However,
multi-channel data has more tissue discriminating
power than single-channel data since multi-channel
images provide more information at a voxel site from
multiple images. Single-channel images do not provide
multi-dimensionality of feature space, but typically
yield smaller voxels and produce high contrast between
gray and white matter. This article presents an auto-
mated method for gray and white matter segmentation
for single-channel cerebral images.

Currently available methods for MR image segmen-
tation can be categorized into classical, statistical,
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fuzzy, and neural network techniques.'”'® Classical
techniques include the use of standard image pro-
cessing techniques such as thresholding,'” edge-based,
"%=20 and pixel-based?"* techniques. Although neural
network techniques have been proposed for MR image
segmentation, they have not been applied to large data-
bases.™** Fuzzy segmentation techniques are yet to be
applied to single-channel image segmentation.***

Classical edge-based approaches extract tissue bor-
ders defined by intensity transitions or by gradients of
intensity transitions and have been used to manually
or semi-automatically outline cortical and subcortical
structures.'® ™™ These methods are slow and subject to
user specific errors, and have not been successful due
to random noise and the complex nature of the edge
patterns in the brain images. In pixel-based methods,
the intensity of a pixel gives the probability of the
pixel being a member of a particular tissue. A threshold
is usually defined based on the histogram of the image,
and pixels with intensity above the threshold belong
to a particular tissue while pixels with intensity values
below the threshold belong to the other tissue. Pixel-
based methods used in previous publications have been
successful in segmenting CSF from brain paren-
chyma,” but have had only limited utility in seg-
menting gray and white matter from single-channel
images.” Thresholding and clustering techniques for
segmentation based on the histogram of the MR images
do not work well because of the presence of random
noise and magnetic field inhomogeneities.

Because thin-sliced single-channel images produce
many slices per brain, an ideal segmentation method
for large samples should be automated, fast, reliable,
and valid. The method presented is automated and ap-
plicable to a larger database. The segmentation is sta-
tistical, “‘pixel based,”” and achieved through probabi-
listic modeling of gray and white matter distributions
and a region growing technique. The method does not
use a prior model such as a Markov random field as
proposed by others,”” because there is no systematic
way of estimating the model parameters. To show the
capability and usefulness ot the present method, it was
applied to segment 105 brain scans of healthy children
and adolescents, aged 4-18, in our MR brain image
data base. The segmented cerebrums were geometri-
cally divided into 16 regions and the volumes of gray
and white matter in these regions were computed to
assess regional brain maturation across the understud-
ied age range of 4—18 years.

Two groups of investigators,”>** have used multi-
ple-channel thick MR slices and an optimal combina-
tion of proton-density and 7, weighted images for dis-
criminating gray and white matter and CSF in pediatric
populations. Their techniques successtully segmented
cortical gray and white matter, but were unable to seg-

ment subcortical gray and white matter and, therefore,
subcortical gray matter structures were outlined by
hand-tracing.” The present method successfully seg-
ments both cortical and subcortical gray and white
matter and the analysis contains regional subdivisions
of cortical and subcortical brain regions. The smaller
voxels in the present study may provide more accurate
information, more sensitive to influences of region,
gender, and age.

MATERIALS AND METHODS

Subjects

Healthy male (n = 56) and female (n = 49) chil-
dren and adolescents were recruited from the commu-
nity. Individuals with physical, neurological, or life-
time history of psychiatric abnormalities or who had
first-degree relatives with major psychiatric disorders
were excluded. Subject recruiting and screening, and
brain structure measurements for these subjects are
presented elsewhere.*

Hardware

All subjects were scanned on a GE 1.5 Tesla Signa
scanner. Images with slice thickness of 1.5 mm in
the axial plane were obtained using three-dimensional
spoiled gradient recalled echo in the steady state (3D
SPGR). Imaging parameters were TE = 5 ms, TR =
24 ms, flip angle = 45°, acquisition matrix = 192 X
256, number of repetitions = 1, and field of view =
24 cm. SPGR sequences are mainly sensitive to T
relaxation response times of the imaging tissues.

Preprocessing

Each SPGR axial image consisted of 124 slices of
16-bit images of size 256 X 256. The images were
converted to 8-bit images before further processing, to
speed up subsequent computations and reduce memory
requirements. Images were then filtered with three-
dimensional anisotropic filter (number of iterations =
4, k = 10, no bias) to improve signal-to-noise ratio
and contrast-to-noise ratio of the images.”**

Images of a representative brain slice, before and after
filtering are shown with their histograms in Fig. 1. The
filtering process smoothens out the regions without dis-
turbing the regional boundaries. The histogram of an
image indicates combined probability distributions of
constituent tissue types. As seen in the figure, the filtering
process reduces the variances of the intensities of tissues
without altering the means of intensities. This enhances
the segmentation of gray and white matter.

Brain shelling
The filtered images were transferred to a HP 9000/
700 series workstation to run the brain shelling pro-
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Fig. 1. SPGR image slices, and their pixel intensity histograms (a) before and (b) after anisotropic filtering.

gram, UvaSegmentor, developed by J.W.S. at the Uni-
versity of Virginia.** UvaSegmentor executes the brain
shelling program based on an active brain surface tem-
plate and separates left and right cerebrum and cerebel-
lum from the head scans. Brain shelling refers to sepa-
ration of cerebrum from external skull, bone, dura,
brain stem, and cerebellum of the MR scans. A brain
model composed of separate models of left and right
cerebellum and cerebrum, which stores the a priori
anatomical knowledge of the brain, is used in the shell-
ing program.

When an input image is applied, the model is initi-
ated within a stereotaxic coordinate framework.”” The
orientation of the coordinate system is defined by the
interhemispheric fissure and the anterior and posterior

commissures, which is done by adjusting user specified
landmarks: anterior commissure; posterior commis-
sure; and the most anterior, most posterior, most infe-
rior, and most superior points of the cerebrum. A
threshold of pixel intensities is also manually selected
for foreground/background separation. This allows the
model to coarsely register to the applied brain image.
The model then deforms so as to satisfy the require-
ments of the extracted features of the given image
using an energy minimizing function.’® As the surface
converges, the earlier selected threshold removes the
background pixels and any CSF voxels that are below
the threshold. The resulting surface effectively sepa-
rates the cerebrum and cerebellum from the head scan.
This method of brain shelling has been validated



1056 Magnetic Resonance Imaging ® Volume 14, Number 9, 1996

against cadaver brains and further details are reported
elsewhere.™

All shelled brains were then edited by experienced
raters to remove artifacts related to patches of dura or
eye ball not removed by UvaSegmentor. After shelling
and editing, only gray and white matter are left, leaving
the segmentation process to separate gray and white
matter in the cerebrum. The ventricular CSF removed
was quantified and used in the computation of total
cerebral volume. The time required for shelling a single
brain is about 20 min.

Gray and white matter segmentation

The segmentation was done slice by slice, one im-
age slice at a time. Every image slice was assumed to
be a rectangular array of n X m pixels where n and m
are integers and the image intensity of a pixel at loca-
tion x e A = {(0,0),(0,1). ... (nm)} on a slice
will be denoted by /{x). We consider that the pixels
are ‘‘pure’’ and contain only one type of tissue. Since
CSF is not present in the shelled images, we model
the intensity of an image slice with two tissue distribu-
tions: gray matter (G) and white matter (W) and as-
sume probability distribution of intensities in each tis-
sue to be Gaussian.

With Gaussian assumption, the probability of a
pixel at location x being white matter, py ( x) can be
written as:

1/In)7yw1,\)\:
3 \ alin ( 1 )

where py( x) and oy ( x) are the mean and the standard
deviation of the white matter intensity distribution at
pixel location x, respectively. Similarly, the probability
of the pixel at location x being gray matter, p;(x) can
be written as:

pw(x) = me

/ Y2
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where u.(x) and og;(x) are the mean value and the
standard deviation of the gray matter intensity distribu-
tion at location x.

The algorithm calculates the probabilities of a pixel
being a particular tissue type at each pixel location
using Eqgs. (1) and (2). The decision of whether a
pixel is white matter or gray matter is taken according
to the maximum likelihood (ML) criteria.”® That is,
the pixel at location x is decided to be gray matter if:

Pi(x) > pw(x) (3)
and it is decided to be white matter if:

Py(x) > pg(x) (4)

otherwise, when the equality occurs, a new decision
is not made. The program goes from one pixel to the
other iteratively and makes decisions according to Egs.
(3) and (4).

To compute probabilities using Eqs. (1) and (2),
one should know the parameters of the distributions.
At the beginning of iterations, tissue parameters are
initialized using those derived from the input image.
If the average intensity of the image location x is p(x)
and standard deviation is o(x), the parameters of the
distributions are initialized as follows:

aw(x) = og(x) = K,.0(x) (5)
pw(x) = p(x) + ky.o(x) (6)
pe(x) = w(x) — k. o(x) (7

where k, and k, are two real positive constants and
determine shapes and separation of the initial distribu-
tions. It was found that &, = k» = 0.5 worked well
with our images. o(x) and u(x) were calculated by
considering a local neighborhood window D, about
the location x. We used the size of D = 25 X 25.

In the above Gaussian mixer model for brain paren-
chyma, the prior probabilities of the gray and white
matter were assumed to be equal. When initializing
the parameters, the two Gaussian distributions were
placed at equal distances from and on the opposite
sides of the mean intensity of the histogram. Further,
the variances of gray and white matter intensities were
made equal and proportional to the image variance. In
the absence of any prior information, these assump-
tions worked well with our images.

As the classification proceeds, gray and white matter
regions grow, and the parameters of the distributions
are updated whenever a decision is made at a pixel,
as the pixel characteristics change from one pixel to
the other. If the decision at pixel location X is made
to be white matter, then the parameters of the pixels
within the neighborhood window D are updated as
follows:

nw(x + Vipw(x +v) + I(x)
Ax +v)= 8
(X V) (X ) 1 (8)

azw(x +v) =
A (x + V) ow(x + v) + (uy(x + v) = I(x))* ©)
aw(x +v) + 1
nw(x +v)=ny(x+v)+1 (10)

where veD, and ny( x + v) is the total number of white
matter pixels already classified as white matter about
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location x + v. Similarly, when a pixel at location x
is decided to be gray matter, the parameters of gray
matter distributions at the neighborhood are updated
as follows:

ng(x + v} pe(x +v) + I(x)

6(x + v) = 11
Holx + 1) ng(x +v) +1 (b
U%}(-\’ +v) =
n(}(-x + V)'O'%’;(X + V) + (ILI(I(X + V) B 1(-)‘:))2 (12)
ne(x + v) + 1
I/l(;(x + V) = "l(;(.‘~ + V) + 1 (13)

where veD, and n;(x + v is the total number of
gray matter pixels already classified as gray matter
at location x + v.

The decision making process continued over the
image slice several times until it became stable. The
iterations were terminated when there were no changes
in the decision making process. Usually, the decision
making process became stabilized in three or four itera-
tions. At the end of the iterations, the volumes of gray
matter and white matter were stored separately and
their regional volumes were measured.

The neighborhood window size D was determined
using a trial and error technique. The optimal value of
window size depends on the minimum structure needed
to be segmented over the image. When the number of
pixels belongs to a particular tissue within a neighbor-
hood window D at a pixel site dropped below a thresh-
old (the value 5 was used here), the tissue class at
such a site was assigned to the other type of tissue.

The segmentation algorithm was implemented in a
Unix/C environment and applied to MR scans of chil-
dren and adolescents.

Application to mr images

All scans were interpreted by a neuroradiologist
who found no evidence of tumors or tissue abnormali-
ties. After CSF was removed by the shelling process,
the remaining brain matter voxels were segmented into
gray or white matter. Although the present method
categorized blood vessels often as white matter and
occasionally as gray matter, the percentage error re-
sulted from vasculature was negligibly small.

Our methodology assumes ‘‘pure pixels’’ through-
out the image, which in actuality, is not true at tissue
boundaries since these voxels may contain a mixture of
tissues. ‘‘Mixed pixels’’ can introduce partial volume
effects, that is, statistical and misclassification errors,
to the segmentation process. Partial volume effects at
the gray and CSF boundaries occur with the shelling
process and are determined at the thresholding step in

UvaSegmentor. The mixed pixels of CSF and gray
matter left with the brain matter is subsequently classi-
fied as gray matter. Mixed pixels at the gray and white
matter boundaries may introduce misclassification er-
rors in the segmentation process. However, because
the voxel size used here is smaller, the error due to
partial volume effects is less than that from multiple-
channel images.

Intensity of a voxel is statistically determined by the
probability distribution of its tissue type over the image.
Since the image intensity is generated by relaxation prop-
erties of brain cells and corrupted by random errors and
noise of the scanner, the distributions were assumed to
be Gaussian. Several probability maps generated using
this assumption are shown in Fig. 2 to demonstrate the
method and the effects of partial volume averaging. A
probability map shows probability values of interest as
the gray values of intensities at pixels. Figures 2a and
2b show probability maps of gray matter (i.e., each pixel
intensity indicates the probability of being gray matter)
and white matter, respectively, computed by the present
algorithm over a brain slice. These maps show the ability
of the method to classify gray and white matter in both
cortical and subcortical regions. Maps in Figs. 2c and 2d
indicate the maximums and the differences of probabili-
ties of pixels being gray matter and white matter, respec-
tively. At the gray and white matter boundaries, both
probabilities were low indicating partial volume effects.
The dark pixels in the maps are the pixels that are most
likely to be misclassified as even a small difference leads
to segmentation of pixels since the classification is deter-
mined by the maximum likelihood criteria.

Even with high quality MR imaging scanner, region
dependent variations of intensities are present over the
images due to irregularities of the field strength and the
sensitivity of the receiver coil.”” This has been a major
obstacle for intensity-based MR image segmentation
methods. Inhomogeneities in the images change the pa-
rameters of the intensity distributions spatially and for
this reason, the parameters of the intensity distributions
were evaluated locally at each point. This procedure ac-
counts for spatial variations of the intensities over the
image as inhomogeneities are usually smoothly varying
and the tissue intensities may not vary over a small neigh-
borhood.* Calculation of parameters at each pixel loca-
tion considering neighborhood pixels is computationally
intensive and slows down the segmentation process. If
the images are free from inhomogeneities, a fast version
(global version) of the algorithm can be used, where a
single set of parameters is evaluated over the image slice.

Definition of cortical and subcortical regions
Anatomical boundaries of the cortex often depend on

gyral and sulcal patterns, quantification of which is be-

yond our current methodology. Therefore, as a crude
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Fig. 2. Probability maps with pixel intensity indicating the likelihood of a given pixel being (a) gray matter and (b) white
matter. Illustration of correct classification of tissue categories using (¢) maximum of gray and white matter probabilities and

(d) the differences of gray and white matter probabilities.

regional evaluation of the segmented tissue volumes, the
cerebrum was divided geometrically into 16 subregions.
Cortical and subcortical division was defined using the
method adopted by Pfefferbaum et al..*"** in which corti-
cal region consisted of the outer 45% of the brain, and
was established anatomically by concentrically stripping
a rim of voxels from the periphery of the brain, until
45% of the brain voxels were removed. The inner 55%
constituted the subcortical region.

To ensure some anatomic consistency of cerebral re-
gions, the cerebrum was subdivided relative to two sub-
cortical landmarks, the anterior commissure (AC), and
posterior commissure (PC). The AC point on the plane
of the interhemispheric fissure (midline plane) is a major
landmark of the brain that remains constant with age.”
A coronal plane (AC plane) was drawn perpendicular to

the midline plane at the AC point, defining the boundary
between anterior, and posterior regions.

To standardize the head placement and define a ref-
erence plane for our images, before scanning, vitamin
E capsules had been placed in the auditory meatus of
each subject’s ears and on the lateral aspect of the
left inferior orbital ridge. Even with these attempts to
standardize the head placement, however, rotation of
the brain image in all three axis may occur due to
subtle movements of the head, changing the placement
and appearance of the images. Therefore, before pro-
cessing, all head scans were rotated in three-dimen-
sional space and aligned so that AC and PC points
were on the same axial plane (AC-PC plane) and the
plane passing through the midline was perpendicular
to the AC-PC plane. This was done by locally written
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software with location of AC and PC points and two
points on the midline taken as inputs. The voxels above
and below the AC-PC plane are referred to as superior
and inferior, respectively.

The resulting 16 regions (left and right hemispheres,
with anterior-posterior, superior-inferior, and cortical-
subcortical subdivisions) are shown in Fig. 3, and simi-
lar to those used by Jernigan et al.™

RESULTS

Interrater and intrarater reliabilities

Since gray and white matter segmentation is fully
automated, the reliability of the present segmentation
method mainly depends on the brain shelling process
whose consistency and accuracy depends on the selec-
tion of the landmarks to initiate the brain model in
stereotaxic coordinate framework, and the threshold
for foreground/background differentiation.

To obtain the intrarater reliability, 10 brains were
selected and each brain was filtered, shelled and seg-
mented for gray and white matter twice by an operator
(Y.C.V.). The intrarater correlation coefficients (ICC)
were calculated for the two attempts and ICC values
for gray matter, white matter, and total brain volume
were 0.995, 0.996, and 0.995, respectively. Interrater
reliability, was also determined between two of our
raters with segmentation of 10 brains and the ICC
values were (.980, 0.915, and 0.950 for gray matter,
white matter, and total brain volume, respectively.

Phantom studies
Any phantom used to validate the method should
mimic the characteristics of gray and white matter and

Anterier

Superior,

Infericr

(a)

simulate the problems encountered in the segmentation
process. A large variety of materials are available for
making phantoms that mimic tissue parameters.*' Based
on previous reports,** various concentrations of dextran-
coated superparamagnetic iron oxide particles ( AMI-25
particles, Advanced Magnetics) in agarose gel (Sigma
Chemical Co. Type |, Low EEO) were selected to
model the relaxation properties of the tissue types.

Addition of iron oxide particles decreased 7', relax-
ation time of the gel resulting in an increase of image
intensity * in the partially saturated imaging parameters
used for this study. Initially, test-tube phantoms of 1%
(wt/vol) agarose with various concentration of iron ox-
ide (0-50 uMolar) were investigated. By comparing
the intensities with the actual tissue intensities, iron ox-
ide concentrations for gray and white matter were deter-
mined. Concentrations of 33 uMolar and 6.7 yMolar of
iron oxide were selected to represent white and gray
matter, respectively, and a phantom was constructed
with agarose gel in a cylindrical plastic bottle. Initially,
gel with 33 pMolar of iron concentration was melted
and poured into the bottle, and then once it was hard-
ened, molten gel with 6.7 uMolar iron concentration
was poured. This simple phantom was chosen because
our segmentation method is “‘pixel based”” and does
not take shape into account. Although partial volume
effects depend on the shape of the phantom, the small
voxel size used here minimizes these effects.

The phantom was imaged parallel to the long axis, in
the same manner as our subjects. The phantom image
was then segmented and volumes of gray and white mat-
ter were measured. Figure 4 shows an image slice of the
phantom and the results of segmentation. Table 1 shows

Cortical ="

(b)

Fig. 3. Tllustration of regional subdivisions of the brain. (a} Anterior and posterior, and inferior and superior divisions shown
on a lateral view of the brain. (b) Cortical and subcortical, and left and right divisions on an axial slice.
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Fig. 4. Separation of gray and white matter of the phantom using the local version of the algorithm.

actual and measured volumes of the simulated tissues and
errors resulting from segmentation using two versions of
the algorithm: one with the global version where one set
of parameters for the distributions were computed over
the whole image, and the local version which was de-
scribed above (see Materials and Methods). The local
version of the algorithm gave more accurate results since
it accounted for the presence of intensity inhomogeneit-
ies. The sum of the gray and white matter volumes seg-
mented were slightly offset from 400 ml because of the
error due to the bottle thickness.

Validation with manual-segmentation

Segmentation results were also compared with hand-
segmented images by one of the authors with extensive
experience in MR brain imaging (J.N.G.). Since hand
segmentation is tedious and time-consuming process, the
segmentation was done only on five slices of a brain
image, taken from different parts of the brain, represent-
ing the whole cerebrum (i.e., a high cortex slice, a mid-
ventricle slice, a slice at the basal ganglia region, a lower
cortex slice, and a slice at medial temporal level). The
same slices were also segmented using the segmentation
algorithm. The brain image was again filtered and shelled,
and the same slices were segmented by the same operator
and by the algorithm, separately. The results of the two
attempts and between manual and automated segmenta-

tion were compared in Table 2. Figure 5 shows the seg-
mentation of three slices performed by the algorithm.
The shelled image slices, segmented white matter and
gray matter are shown in the columns, respectively, in
the figure.

Except in the segmentation of the mid-ventricular
slice, the differences between the hand and automated
segmentation volumes were less than 10% of the total
tissue volumes. Between the two attempts of manual
segmentation of mid-ventricular slice, the error was more
than 10%. This indicates that the complex boundaries of
gray and white matter make manual segmentation of
brain slices difficult and inconsistent. Still, subjective as-
sessment by an experienced anatomist remains the best
way to evaluate the output of a segmentation algorithm.'?
Even with extreme care, the segmentation using manual
tracing showed a poor segmentation visually, compared
to the segmentation produced by the algorithm. The re-
sults of the two attempts for the overall segmentation
process using the algorithm were slightly offset due to the
subjective determination of landmarks and the threshold
during shelling.

Pediatric MR images

The segmentation algorithm was applied to 105
scans (56 males and 49 females) of shelled brains of
children and adolescents. Significant sex differences

Table 1. Actual and measured volumes of different regions of the phantom

Measured volumes (ml) Differences

Sample region Actual volume (ml) Global method Local method Global method Local method

White 200.0 169.0 199.5 0.50% 0.25%
Gray 200.0 201.8 201.3 0.90% 0.75%

The different regions were composed of 1% agar gel with varying concentration of dextran coated iron oxide parlicles. The total iron
concentration in the different regions were: “*white matter’”, 33 puM; ‘gray matter’”, 6.7 uM. Measured volumes and the differences are shown
for both local and global version of the algorithm,
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Table 2. Validation of gray matter and white matter volumes obtained by the segmentation method against hand-tracing

Gray matter

White matter

Slice Level Manual trace Algorithm Difference Manual trace Algorithm Difference

High cortex:
st Attempt 3.966 4.203 —5.6% 5.905 5.668 4.0%
2nd Attempt 3.996 4.181 —4.6% 5.905 5.720 3.1%
Ditference 0.0% 0.5% 0.0% 0.9%

Mid-ventricular:
st Attempt 8.497 8.232 3.1% 10.358 10.623 —2.6%
2nd Attempt 7.020 8.266 —17.7% 11.835 10.589 10.5%
Difference 19.0% -0.4% —133% 0.3%

Basal ganglia:
Ist Attempt 11.462 12.029 -4.9% 13.686 13.119 4.1%
2nd Attempt 11.392 11.791 —3.5% 13.756 13.357 2.9%
Difference 0.6% 2.0% -0.5% 1.8%

Lower cortex:
Ist Attempt 11.803 12.029 -1.9% 14.291 13.257 7.2%
2nd Attempt 12.444 12.245 1.6% 13.650 13.849 —1.5%
Ditference —5.3% —1.7% 4.6% —4.3%

Medial temporal:
Ist Attempt 10.145 9.468 6.7% 10.002 10.679 —6.7%
2nd Attempt 9.690 9.550 1.4% 10.457 10.597 —1.3%
Difference 4.6% 0.9% —4.4% 1.0%

The volumes are in cubic centimeters, and the percentage difference = ratio of (hand-tracing—algorithm)/hand-tracing. The brain was filtered
and shetled and each slice was hand-traced and segmented twice. The differences as the percentage of mean values of the two attempts are

also shown.

for total cerebral volume (p < .001) were found with
male brains 8.5% larger than the female brains, as
previously reported for a subset of this sample.** There
was no significant age-related increase of total cerebral
volume across ages 4—18 (p = .16).

Regression analyses were carried out for total gray
and white volumes with age. Since cerebral volume
depends on the gender, the tissue volumes were divided
by the total brain volume to remove the total brain
volume effect. The regression lines are shown in Fig,
6. For both males and females, white matter volume
increased significantly (p < .001) and gray matter
volumes decreased significantly (p < .001). There
were no significant differences between the male and
female regression lines.

Multiple regression analyses were also done for re-
gional gray and white matter volumes in relation to
regional total volume and age. The posterior and supe-
rior regions showed the most robust changes with the
age in both left-right, and cortical-subcortical regions.
Across ages 4 to 18, the gray matter in these regions
significantly decreased (p < .001) and white matter
significantly increased (p < .001). This pattern of
changes also appeared in the left anterior superior re-
gion of the brain while only trends were seen in ante-
rior inferior cortical regions (p = .56 and .082 for gray
and white matter, respectively). In addition, similar
changes were seen in the left side of the posterior

inferior regions. Figure 7a illustrates the white matter
variation in anterior and posterior regions with age,
and Fig. 7b shows the variation of inferior and superior
white volume change. The speeds of growth of white
matter in the two regions in both cases differed sig-
nificantly from each other.

ANOVA and ANCOVA were performed to test the
laterality effects of tissue volumes. The left hemisphere
had more white matter (in males 20.6 ml more and in
females 14.6 ml more) and less gray matter (in males
10.2 ml less and females 4.3 ml less) than the right
hemisphere.

DISCUSSION

An automated method for gray and white matter
segmentation of single-channel MR brain scans is pre-
sented that appears valid and reliable and can be used
to segment large data sets. Previous methods were
semi-automated and designed for only multiple-chan-
nel MR brain scans with less than 20 slices represent-
ing a brain.*** The present automatic method fills a
need for analyzing MR image data sets with thin slices
and more than 100 slices for each brain. The segmenta-
tion process took about 20 min per brain on our Sparc
10 workstation. Fortunately, the automated nature of
the segmentation procedure allows several hundred
brains to be processed as one batch. Although the con-
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(@)

{c)

Fig. 5. Hlustration of gray and white matter segmentation of three slices of a brain image using the automated algorithm. (a)
Shelled brain slice with CSF and skull excluded; (b) segmented white matter; and (c) gray matter.

vergence of the segmentation is achieved for all the
brains tested, the convergence of the algorithm needs
to be investigated.

Noise and random errors in the images were re-
moved using anisotropic filtering, which improved
noise and contrast without blurring edges or structural
details, *** while locally dependent parameters of the
probability distributions overcame smoothly varying
inhomogeneities of the intensities over the image. In
addition, because slice by slice segmentation was
adopted, the intensity variations in axial directions did
not affect the segmentation scheme. As a result, it was
not necessary to use any filter or other method for
correcting inhomogeneities as the segmented images
did not show any such effects. The phantom studies
also confirmed greater accuracy for the local version

of the algorithm described here than with the global
method, supporting the ability of the present algorithm
to take inhomogeneities into account.

The present method accurately segments subcortical
white and gray matter, which was not possible using
previous methods utilizing multiple-channel MR
data.”~*' Subcortical gray matter was previously sepa-
rated by hand-tracing,”" which was prone to the vari-
ability due to subjective determination of tissue bound-
aries. Nevertheless, the present data supports the previ-
ous findings of decreasing subcortical gray matter
across our age span.’"

A disadvantage of our method is that CSF could
not be quantified as ventricular CSF and sulcal CSF
as it was removed during brain shelling. This did not

permit us to find the relation between the variation of
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Gray and White Matter Volume in Relation to Age in 105 Healthy Children and Adclescents
Gray Volume Vs. Age White Volume Vs. Age

0.60
0.55

o ___males y=0.400+0.004x, p<.001
o . females y=0.401+0.003x, p<.001

0.55
0.50
o

Gray Volume/Brain Volume
0.50
White Volume/Brain Volume

w
'd: 4

@l I

© les y=0,585-0,004x, p<.001

5 .Tfénmaa?essyyw.sss-o.ooé(x,pp<<.001

o (@]

<t <

o L : . . - . o L= . - - .

4 6 8 10 12 14 16 18 4 6 8 10 12 14 16 18
Age (years) Age (years)
(a) (b)

Fig. 6. Scatter plots by age and gender of (a) gray matter volume/total brain volume; and (b) white matter volume/total
brain volume for 105 children and adolescents.

CSF volume and the changes in volumes of the other method is that the regional subdivisions could not be
tissues as others have done.?' Although the partial vol- related to sulcal and gyral patterns. Although function-
ume effects are less with images with smaller voxel ally relevant regions based on sulcal and gyral patterns
sizes, their presence at the tissue boundaries were seen have been proposed,** implementation of an automated
with probability maps. Another disadvantage of our measurement technique to get regional volumes is dif-

Regional White Matter Volume Vs. Age for 105 Children and Adolescents
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Fig. 7. Scatter plots by age and region ot white matter volume for (a) anterior and posterior regions; and (b) inferior and
superior regions for 105 children and adolescents.
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ficult. The scatter seen in some of the measured re-
gional tissue volumes could be due to arbitrariness in
the definition of regional volume boundaries.

Age-related increase in white matter and decrease
in gray matter are consistent with previous reports.**
These changes are similar for males and females. The
white matter increase demonstrates continuing myelin-
ation and axonal growth while the gray matter decrease
presumably evinces cell death and synaptic pruning.
White matter increase is seen mostly in superior re-
gions and appears to be more rapid in the posterior
segment. Posterior superior regions contain sensory in-
tegrational and associational areas while anterior supe-
rior regions involve higher cognitive functions,** and
it is of interest that both of these regions showed sig-
nificant growth in white matter across our age span,
possibly reflecting brain maturation underlining devel-
opments of higher order cognitive and associational
capacities.

Our technique of segmentation may be useful in
measurement of brain tissues and in finding correlation
of those measurements to behavioral and physiological
parameters for clinical populations. Its application to
the study of brain development in children and adoles-
cents has been demonstrated, and the consistency of
the results with earlier reports, further supports the
validity of this technique. With thinner slices of single-
channel data, higher accuracy of the measurements and
less partial volume effects can be expected. The
method 1s insensitive to nonhomogeneities over the
image. These characteristics make it ideal for applica-
tion to a large population of brain scans. Currently,
the method is being used to segment brain scans of
large samples of children with various neuropsychiatric
disorders having onset in this understudied age period.
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